

Sustaining educational change –

The case of a strategic and long-term CDIO implementation at Chalmers University of Technology

Professor Johan Malmqvist

Chalmers University of Technology Gothenburg, Sweden

SESSION OBJECTIVES

- Change driver and barriers in universities
- Generic change process model, adapted to education change
- Case: Mechanical engineering at Chalmers University of Technology
- CDIO implementation support and resources
- Concluding remarks & discussion

DRIVERS AND IGNITERS FOR EDUCATIONAL CHANGE

Based on R Graham: Achieving excellence in engineering education: the ingredients of successful change, 2012

BARRIERS TO CHANGE IN UNIVERSITY EDUCATION

Based on R Graham: Achieving excellence in engineering education: the ingredients of successful change, 2012

CHANGE IN UNIVERSITIES (CONT)

- Perspective 1: Universities are, by design, resistant to change as organizations
 - In Europe, of the more than 25 institutions that have operated continuously since the Reformation, all but four are universities
- Perspective 2: Notwithstanding Observation 1, universities can be changed by appropriate application of best practice in leading organizational change

KOTTER'S MODEL FOR ORGANIZATIONAL CHANGE PROCESSES

1 Establish a sense of urgency

2 Form a powerful guiding coalition

3 Create a vision

4 Communicate the vision

5 Empower others to act on the vision

6 Plan for and create short-term wins

7 Consolidate improvements and produce still more change

ccio

8 Institutionalize new approaches

ADAPTING KOTTER'S MODEL TO EDUCATIONAL DEVELOPMENT

Getting off to the right start	Building the momen- tum in the core activities of the change	Institutionalizing change
 Understanding the need for change Leadership from the top Creating a vision Support for early adopters Early successes 	 Moving off assumptions Including students as agents of change Involvement and ownership Adequate resources 	 10 Faculty recognition and incentives 11 Faculty learning culture 12 Student expectations & academic requirements

EXAMPLES: #5 EARLY SUCCESSES

cdio

- Identify and enhance CDIO syllabus learning outcomes for some courses
- Start, or modify, a first-year engineering course that includes a simple design-implement experience.
- Get involved in a student design-build competition like Formula Student
- Modify an existing classroom space to create a design-implement workspace that supports hands-on and social learning.

Teamwork? Oral communication?

EXAMPLES: #11 FACULTY LEARNING CULTURE

Enhancement of CDIO Skills

- Hire faculty with industrial experience
- Give new hires a year to gain experience before beginning program responsibilities
- Create educational programs for current faculty
- Provide faculty with leave to work in industry
- Encourage outside professional activities that give faculty appropriate experiences
- Recruit senior faculty with significant professional engineering experience

EXAMPLES: #11 FACULTY LEARNING CULTURE

Enhancement of Teaching Skills

- Hire faculty with interest in education and ask them to discuss teaching during their interviews
- Encourage faculty to take part in CDIO workshops
- Connect with the teaching and learning centers at your universities
- Invite guest speakers on teaching topics
- Organize coaching by educational professionals or distinguished peers
- Participate in teaching mentorship programs

PLANNING THE CHANGE PROCESS

- Evaluate your program. What are your strengths and weaknesses with respect to the CDIO Syllabus and Standards? (1. Understand need)
- Elaborate the vision and strategy be ready to answer the why, what and how
- Identify some early successes (5. Early Successes)
 - Easy to implement
 - Quick payoff
 - Visible results
- Generate buy-in from faculty (8. Involvement and Ownership)
 - Give them tools and resources to help with changes
 - Reward faculty who embrace and drive CDIO
 - Give faculty ownership in the project
- Identify resources you need to before you embark on large changes especially project-based courses (9. Adequate resources)
- Plan how to assess and measure the impact of the changes that you make

Turn to the person sitting next to you and discuss:

DISCUSSION

- What are the three most urgent needs for change in your program?
- What will you gain if you are able to address these needs?

THE CHANGE PROCESS OF THE MECHANICAL ENGINEERING PROGRAMME AT CHALMERS UNIVERSITY OF TECHNOLOGY

CASE STUDY: CHALMERS MECHANICAL ENGINEERING PROGRAM

- Five-year program leading to "civilingenjör" degree (master of science in engineering)
- Organized in 3+2 format students also obtain bachelor of science and master of science degrees
- 14 electable master programs, all taught in English
- 150 students admitted per year, 20% female
- Highest number of 1st pref application of Swedish mechanical engineering programs
- Appointed Centre of Excellence in Higher Education in 2008
- Awarded engineering education of the year award in 2012
- Awarded rating "very high quality" by Swedish National Agency of Higher Education (2013) (only ME program in Sweden with this rating)

PLANNING THE CHANGE AT CHALMERS

Identify needs & opportunities for change	<i>Strengths</i> - Project-based courses - Design courses	+ More	
	Weaknesses - No design-build-test projects, lack of authenticity - Employer requested better communication skills, proje leadership & initiative - Poor links between maths and engineering subjects	ect + More	
Establish vision & strategy	CDIO was selected as basis for a program vision & strategy		
Identify early successes	4 th year design-build-test competition-based projects we focused (Formula Student, Autonomous vehicles)	ere	
Set up system for measuring the change	Self-assessment vs CDIO standards (but first we needed to articulate the standards and their rubrics) Invited external evaluators		
Obtain management support & resources	Strong support from school leadership Financial support from Wallenberg foundation		

VISION

The "Civilingenjör" (MScEng) program in Mechanical Engineering aims to develop the knowledge, skills and attitudes that are needed to be able to

Lead and participate in the design and operation of industrial products, processes and systems

This includes the entire lifecycle from identifying needs, creating solutions, design, manufacturing, marketing, operating, maintaining, recycling to eliminating

PROGRAM STRATEGY (EXCERPT)

- The "main thread" of the programme is a holistic view of product and system lifecycle development and deployment.
- The programme should have computation-oriented and integrated mathematics education with focus on modelling, simulation and analyses
- The programme should have introductory provides a framework for the practice of engineering in product and system building and includes a
- Team-based DBT courses with realistic and relevant assignments should be included in all years
- The programme should have its own prototype laboratory and workshop, and adequate spaces for teamwork in projects
- Development of students' teamwork and communication skills should be integrated in many courses with explicit progression
- Relevant aspects of sustainable development should be emphasized, and the focus is on product development, materials and energy supply
- ... (continued) ...

EARLY SUCCESSES

Formula Student

Autonomous vehicles

<image>

Visible, competition-based projects marketed the change project and communicated the idea of what the project was about to students and faculty

FROM THE STARTING POINTS - THE CDIO JOURNEY HAS TAKEN 10+ YEARS

Pre CDIO	CDIO planning	CDIO basic design & piloting	CDIO implementation	CDIO +
-2000	2000-2001	2001-2004	2004-2008	2009-
 M2000 reform Project courses More design Early eng experiences Master-like profiles No design- build-test 	 Set project goals Concretize CDIO concept Bench- marking Design-build- test pilots 	 Prototyping lab Multiple design-build- test projects Integrated learning 3+2 education structure adapted 	 Mathematics Sustainability Bachelor project English on master level HSV Excellence center 	 Virtual learning environment for math stat Integrated sustainability Set new goals Visiting committee

INTEGRATED CURRICULUM YEAR 1-3

Year 1

Common computation labs in mathematics, programming & engineering science

Year 2

Mechanics and Solid Mechanics I II	Machine Elements 7.5 ECTS	Integrated Design and Manufacturing Project 7.5 ECTS	
7.5 ECTS			
Materials	Materials and	Sustainable product	Industrice roduction &
7.5 ECTS	Manufacturing	development 4.5 ECTS	Org 6 E 🖌 🛛 🔵 🔴
	Technology	Thermodynamics	Industria conomics
	7.5 ECTS	7.5 ECTS	4 ECTS

Year 3

Mechatronics	Control Engineering	Bachelor Thesis Project 15 ECTS		
7.5 EC15	7.5 EC18			
Fluid Mechanics7.5 ECTS	Elective I 7.5 ECTS	Elective II 7.5 ECTS	Mathematical Statistics 7.5 ECTS	

Communications

- Teamwork
- Sustainability

A CURRICULUM WITH MANY DESIGN-BUILD-TEST PROJECTS

ADVANCED DESIGN-IMPLEMENT-TEST PROJECT

CDIO IMPLEMENTATION WORKSPACE – THE PROTOTYPING LABORATORY

- 450 m2 facility where students can build prototypes
- Metal machining, woodworking, rapid prototyping, welding, electronics, ...
- Used in courses and projects from year 1 to master thesis projects

MATHEMATICS REFORM

- Reformed mathematics emphasizing simulations
- Motivate importance of mathematics and applied mechanics courses
- Realistic engineering problems
- Working method based on modelling, simulation & analysis
- MATLAB programming
- Visualization of mechanical behaviour

Year 1 lab example

Analys av plan elastiska skiva med fyra hål

Beräkna spänningskoncentrationsfaktorn. Avgör om spänningshöjningarna vid hålen samverkar. Symmetrier skall utnyttjas.

MEASURING THE CHANGE - SELF-ASSESSMENT WRT CDIO STANDARDS

Sca	le Criteria
5	Evidence related to the standard is regularly reviewed and used to make improvements.
4	There is documented evidence of the full implementation and impact of the standard across program components and constituents.
3	Implementation of the plan to address the standard is underway across the program components and constituents.
2	There is a plan in place to address the standard.
1	There is an awareness of need to adopt the standard and a process in place to address it.
0	There is no documented plan or activity related to the standard.

CDIO as Context Adoption of the principle that product and system lifecycle development and deployment - Conceiving, Designing, Implementing and Operating - are the context for engineering education CDIO Syllabus Outcomes Specific, detailed learning outcomes for personal, interpersonal and product and system building skills, consistent with program goals and validated by program stakeholders Integrated Curriculum A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential exercanal and interpersonal skills	CDIO STANDARD	EVIDENCE OF COMPLIANCE	RATING	ACTIONS
Adoption of the principle that product and system lifecycle development and deployment - Conceiving, Designing, Implementing and Operating - are the context for engineering education - CDIO Syllabus Outcomes Specifie, detailed learning outcomes for personal, interpersonal and product and system building skills, consistent with program goals and validated by program stakeholders - Integrated Curriculum - - A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills - Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and integrate personal skills -	CDIO as Context			
system lifecycle development and deployment - Conceiving, Designing, Implementing and Operating - are the context for engineering education CDIO Syllabus Outcomes Specific, detailed learning outcomes for personal, interpersonal and product and system building skills, consistent with program goals and validated by program stakeholders Integrated Curriculum A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and introduces essential personal and introduces product and system building, and introduces product and system building, and introduces product and system building, and introduces product and system building.	Adoption of the principle that product and			
- Conceiving, Designing, Implementing and Operating - are the context for engineering education - CDIO Syllabus Outcomes Specific, detailed learning outcomes for personal, interpersonal and product and system building skills, consistent with program goals and validated by program stakeholders - Carriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills - Constant of the personal, interpersonal and product and system building skills - Constant of the personal, interpersonal and product and system building skills - Constant of the personal, interpersonal and product and system building skills - Constant of the personal, introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	system lifecycle development and deployment			
Operating - are the context for engineering education	- Conceiving, Designing, Implementing and			
cducation	Operating - are the context for engineering			
CDIO Syllabus Outcomes Specific, detailed learning outcomes for personal, interpersonal and product and system building skills, consistent with program goals and validated by program stakeholders Integrated Curriculum A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal integrate personal skills	education			
Specific, detailed learning outcomes for personal, interpersonal and product and system building skills, consistent with program goals and validated by program stakeholders Integrated Curriculum A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	CDIO Syllabus Outcomes			
personal, interpersonal and product and system building skills, consistent with program goals and validated by program stakeholders Integrated Curriculum A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	Specific, detailed learning outcomes for			
building skills, consistent with program goals and validated by program stakeholders Integrated Curriculum A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	personal, interpersonal and product and system			
and validated by program stakeholders Integrated Curriculum A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential nersonal and integratement skills	building skills, consistent with program goals			
Integrated Curriculum A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential presented interpersonal skills Production to Engineering	and validated by program stakeholders			
A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	Integrated Curriculum			
supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	A curriculum designed with mutually			
explicit plan to integrate personal, interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	supporting disciplinary subjects, with an			
Interpersonal and product and system building skills Introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	explicit plan to integrate personal,			
An introduction to Engineering An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skille	interpersonal and product and system building			
An introductory course that provides the framework for engineering practice in product and system building, and introduces essential personal and interpersonal skille	Introduction to Engineering			
framework for engineering practice in product and system building, and introduces essential personal and interpersonal skills	An introductory course that provides the			
and system building, and introduces essential	framework for engineering practice in product			
and system ordinang, and introduces esociation	and system building and introduces essential			
	nersonal and internersonal skills			

CDIO SELF-EVALUATION EVOLUTION

	Standard	2000	2003	2005	2008	2010
1	CDIO as context	2	2	4	4	4
2	CDIO syllabus outcomes	1	1	2	4	4
3	Integrated curriculum	2	2	3	4	4
4	Integration to engineering	3	4	4	4	4
5	Design-build experiences	1	3	4	4	4
6	CDIO workspaces	1	3	4	4	4
7	Integrated learning experiences	2	2	3	4	4
8	Active learning	1	1	3	3	4
9	Enhancement of faculty CDIO skills	1	1	2	2	2
10	Enhancement of faculty teaching skills	1	2	2	3	3
11	CDIO skills assessment	2	2	3	3	3
12	CDIO programme evaluation	1	2	3	4	4
Avera	ige	1.5	2.1	3.1	3.6	3.7

0	1	2	3	4

Short term

2010-2011

- Intellectual prop mgmt
- Extended sustainability
- Virtual learning environment in 1st year math courses
- Material science courses with product focus
- Expanded CAD course
- Establish international visiting committee

Long term

2010-2020

- Interactive T, L & A
- Dialogue instead of monologue
- Creative abilities, innovation and entrepreneurship
- New technologies and materials
- Prepare for global collaboration and competition
- Challenge-based innovation

LESSONS LEARNED FROM IMPLEMENTATION 1(2)

- Education reform needs to take place at least program level not all pieces of CDIO are new, it is the comprehensiveness that makes the difference
- Education reform is not only about one radical change project, it also requires long-term continuous improvement
- The standards and the benchmarking methods developed in the CDIO project helped structure and continuously improve the program
- The ME program has come out positively in several evaluations due to its CDIO implementation
- Industry has been very positive throughout
- The CDIO project has strengthened the teacher team

LESSONS LEARNED FROM IMPLEMENTATION 2(2)

- As a first visible effect, the creation of a few design-build projects at an early stage was a showcase for the project
- Some tasks took much longer time than expected
 - Building the prototyping lab & reforming the mathematics course
 - Continual support from management and program advisory board is needed
- We still only have few individuals who can take responsibility for professional and non-technical skills
 - Vulnerability faculty development important

cdio

Turn to the person sitting next to you and discuss:

- Identify 3 key challenges or barriers that you face in implementing a CDIO approach in your program.
- What resources can you draw on to address these challenges?

CONCLUDING REMARKS: SUSTAINED EDUCATIONAL DEVELOPMENT

Getting off to the right start

- 1 Understanding the need for change
- 2 Leadership from the top
- 3 Creating a vision
- 4 Support for early adopters
- 5 Early successes

Building the momentum in the core activities of the change

- 6 Moving off assumptions
- 7 Including students as agents of change
- 8 Involvement and

ownership

9 Adequate resources

Institutionalizing change

10 Faculty recognition and incentives
11 Faculty learning culture
12 Student expectations & academic requirements

But more is needed!

BUT MORE IS NEEDED

- High ambitions and goals
- A customized approach that fits the needs and constraints of the program
- A program-level perspective
- An ability to set new goals
- A challenging program advisory board or visit committee
- Long-term strategy & vision, continuity
- Active search for external input
- An effective quality enhancement system
- Development and maintenance of a teacher team with a program perspective
- A continual effort to create attention to educational issues

Based on R Graham: Achieving excellence in engineering education: the ingredients of successful change, 2012

TO LEARN MORE ABOUT CDIO ...

OPEN-SOURCE RESOURCES

Available at http://www.cdio.org

- The CDIO Syllabus
- The CDIO Standards
- Start-Up Guidance
- Implementation Kit (I-Kit)
- Papers from CDIO conferences

Other

- Rethinking Engineering Education: The CDIO Approach by Crawley, Malmqvist, Östlund, & Brodeur, 2007
- Annual international CDIO conference
- Local, regional, and international workshops

Edward Crawley Johan Malmqvi Soren Ostlund

Doris Brodeur

Rethinking

Engineering

With Foreword by Charles M. Vest

Education

The CDIO Approach

Thank you for listening!

Any questions or comments?